Processes

Back to Process Management

Interprocess Communication (1)

* Independent versus cooperating processes

° Information sharing, Computation speedup,
Modularity, Convenience

Message Passing Shared Memory
process A X : process A |
' [W1
shared g
2
process B X process B o=

I_ Im

kernel W kernel

Interprocess Communication (2)

e Shared-memory systems

> Producer — consumer problem
Unbounded buffer
Bounded buffer

IIIIII’-F -H'.IIII

| BoundedBuffer

. object |

.-r-""'" . j‘\-..
object reference object rEfEE‘Ti

T . TN
. Producer 4} %, Consumer {*-
(S (J

Interprocess Communication (3)

public interface Buffer <E> {
/I producers call this method
public void insert(E item);

/I consumers call this method public class Bufferlmpl<E> implements Buffer<E> {
public E remove(); private static final int BUFFER_SIZE = 5;
Y private E[] elements;
private int in, out, count;

public Bufferlmpl() {

count = 0;in = 0; out = 0;

elements = (E[]) new Object[BUFFER_SIZE];
}

Il producers call this method
public void insert(E item) {

}

/I consumers call this method
public E remove() {

}

Interprocess Communication (4)

public void insert(E item) {
while (count == BUFFER_SIZE)
;// do nothing -- no free space

/I add an element to the buffer
elements[in] = item;

in = (in + 1) % BUFFER_SIZE;
++count;

public E remove() {
E item;

while (count == 0)
;// do nothing - nothing to consume

/] remove an item from the buffer
item = elements[out];

out = (out + 1) % BUFFER_SIZE;
--count;

return item;

Interprocess Communication (5)

* Message passing

> No shared memory
send(message)
receive(message)

Fixed or variable size messages

Complexity: system level implementation or
programming task

Establish communication link

Various physical implementations (shared memory,
hardware bus, network)

Logical implementation

* Direct or indirect communication

* Synchronous or asynchronous communication
* Automatic or explicit buffering

(0]

(0]

(0]

o

Interprocess Communication (6)

> Naming
Direct communication - - hard coding of nhames
* send(P, message)
* receive(Q, message)
* Link properties
Between a pair of processes that need to know each
others’ identity
Between exactly two processes
A single link between each pair of processes
* Symmetry versus asymmetry in addressing

receive(id, message)

Interprocess Communication (7)

Indirect communication

* Mailboxes or ports

- send (A, message)

* receive(A, message)

* Link properties
Between a pair of processes sharing a mailbox
Link maybe shared by more than two processes
A pair of processes may share any number of mailboxes

* Who receives a message!?
Associate a link to only a pair of processes
Allow at most one receive

Allow arbitrarily or algorithmically which process receives
the message, possibly identifying the recipient to the sender

* Mailbox owner: system or process
Create, Send and Receive messages, Delete, Change owner

Interprocess Communication (8)

e Synchronisation

> Blocking or non-blocking send and receive
Synchronous or asynchronous

> Rendezvous: blocking send and receive
Trivial solution to consumer/producer problem

 Buffering
o Zero capacity — no messages waiting
> Bounded capacity — at most n messages waiting
> Unbounded capacity — any number of messages
waiting
o Latter two automatic buffering

Interprocess Communication (9)

public interface Channel<E> {
public void send(E item);
public E receive();

public class MessageQueue<E> implements Channel<E> {
private Vector<E> queue;
Producer
public MessageQueue() {

Channel<Date> mailBox =
queue = new Vector<E>();

new MessageQueue<Date>();

} mailBox.send(new Date());

public void send(E item) { Consumer
queue.addElement(item);

}

Date rightNow = mailBox.receive();

System.out.printin(rightNow);
public E receive() { ystem.out.println(rightNow)

if (queue.size() == 0) return null;
else return queue.remove(0);

INTERPROCESS

COMMUNICATION (9)

Local procedure call subsystem

Client

A

Connection X
request connection Handle
port
Handle client

communication port

I

sarver Handle

Server

communication port

shared

Y
'y

section object

Y

[< = 256 bytes)

Client/Server Communication

* Sockets
* Remote procedure calls (RPC)
* Remote method invocation (RMI)

Sockets ()

e A socket is defined as an
endpoint for
communhnication

o Concatenation of IP —
address and port (146.86.5.20)
(>1024), e.g.

socket
(L6 86 5 20 625

161.25.19.8:1625
e Communication
between a pair of

sockets

e Client/Server
architecture

web server
(161.25.19.8)

socket
Al 25 sk

o All connections must be
unique

Sockets (2)

e java.net

e Connection-oriented .
public class DateServer
{
—_ public static void main(String[] args) {
(TCP) sockets ol
ServerSocket sock = new ServerSocket(6013);
S O C ke t // now listen for connections
while (true) {
. Socket client = sock.accept();
e Connectionless (UDP) emteas pone <
PrintWriter pout = new
PrintWriter (client.getOutputStream(), true);

SOCketS - // write the Date to the socket
pout.println(new java.util.Date().toString());
DatagramSocket

e MulticastSocket)

catch (IOException ice) {

o) Subclass of | | System.err.println(ice);
DatagramSocket)

// close the socket and resume
// listening for connections
client.close();

Sockets (3)

public class DateClient

{

public static void main(String[] args) {

try {
//make connection to server socket

Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

// read the date from the socket

String line;

while ((line = bin.readLine()) !'= null)
System.out.println(line);

// close the socket connection
sock.close();

}

catch (IOException ioce) {
System.err.println(ice);
}

Loopback

For contemplation

* What are the benefits and detriments of each of the
following? Consider both the systems and the
programmers’ levels.

o Symmetric and asymmetric communication
> Automatic and explicit buffering

> Fixed-sized and variable-sized messages

